mTOR/autophagy pathway in the hippocampus of rats suffering intermittent hypoxia preconditioning and global cerebral ischemia-reperfusion
نویسندگان
چکیده
We explored the role of mTOR/autophagy pathway in the aggravation of cerebral ischemia-reperfusion nerve injury caused by intermittent hypoxia. Eighty male wistar rats were divided into four groups by the random number method: sham operation group (SO group, n=20), cerebral ischemia-reperfusion group (I/R group, n=20), intermittent hypoxia and cerebral ischemia-reperfusion group (IH+I/R group, n=20), intermittent hypoxia and cerebral ischemia-reperfusion group plus mTOR inhibitor group (inhibitor group, n=20).The results showed that compared with the SO group, HE staining showed structural damage of neurons at each time point, the immunohistochemical assay showed an increasing number of mTOR and beclin1 immune-positive cells (P<0.05) and RT-PCR showed enhanced expression of mTOR and beclin1 protein in the I/R group (P<0.05). Compared with the I/R group, HE staining showed exacerbating structural damage of neurons at each time point, the immunohistochemical assay showed an increasing number of mTOR and beclin1 immune-positive cells (P<0.05) and RT-PCR showed enhanced expression of mTOR and beclin1 protein in the IH+I/R group (P<0.05). Compared with the IH+I/R group, HE staining showed remissive structural damage of neurons at each time point, the immunohistochemical assay showed a decreasing number of mTOR immune-positive cells and a rising number of beclin1immune-positive cells (P<0.05) and RT-PCR showed weakened expression of mTOR protein and enhanced expression of beclin1 protein in the inhibitor group (P<0.05). Thence, the present study indicated that intermittent hypoxia preconditioning can aggravate the nerve injury of the global cerebral ischemia-reperfusion model, and the mechanism is associated with the activation of mTOR/autophagy pathway.
منابع مشابه
Neuroprotective Effects of Exercise on Brain Edema and Neurological Movement Disorders Following the Cerebral Ischemia and Reperfusion in Rats
Introduction: Cerebral ischemia and reperfusion causes physiological and biochemical changes in the neuronal cells that will eventually lead to cell damage. Evidence indicates that exercise reduces the ischemia and reperfusion-induced brain damages in animal models of stroke. In the present study, the effect of exercise preconditioning on brain edema and neurological movement disorders followin...
متن کاملProtection of Hippocampal CA1 Neurons Against Ischemia/Reperfusion Injury by Exercise Preconditioning via Modulation of Bax/ Bcl-2 Ratio and Prevention of Caspase-3 Activation
Introduction: Ischemia leads to loss of neurons by apoptosis in specific brain regions, especially in the hippocampus. The purpose of this study was investigating the effects of exercise preconditioning on expression of Bax, Bcl-2, and caspase-3 proteins in hippocampal CA1 neurons after induction of cerebral ischemia. Methods: Male rats weighing 260-300 g were randomly allocated into three gro...
متن کاملInhibition of mTOR Pathway by Rapamycin Reduces Brain Damage in Rats Subjected to Transient Forebrain Ischemia
The aims of this study are to clarify the role of mTOR in mediating cerebral ischemic brain damage and the effects of rapamycin on ischemic outcomes. Ten minutes of forebrain ischemia was induced in rats, and their brains were sampled after 3 h, 16 h, and 7 days reperfusion for histology, immunohistochemistry and biochemical analysis. Our data demonstrated that cerebral ischemia resulted in bot...
متن کاملRapamycin prevents cerebral stroke by modulating apoptosis and autophagy in penumbra in rats
Objective Whether activation or inhibition of the mTOR pathway is beneficial to ischemic injury remains controversial. It may result from the different reaction of ischemic penumbra and core to modulation of mTOR pathway after cerebral ischemia-reperfusion injury in rats. Methods Longa's middle cerebral artery occlusion (MCAO) method was conducted to induce the focal cerebral ischemia-reperfu...
متن کاملNeuroprotective effects of Withania coagulans root extract on CA1 hippocampus following cerebral ischemia in rats
Objective: Oxygen free radicals may be implicated in the pathogenesis of ischemia reperfusion damage. The beneficial effects of antioxidant nutrients, as well as complex plant extracts, on cerebral ischemia-reperfusion injuries are well known. This study was conducted to determine the effects of the hydro-alcoholic root extract of Withania coagulans on CA1 hippocampus oxidative damages followin...
متن کامل